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Abstract 
An aerosol deflection technique based on the single-shot UV-laser-
induced fluorescence spectrum from a flowing particle is presented as a 
possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued 
by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 
µm in diameter) have been successfully deflected from a stream of 
ambient aerosols. The electronics needed to compare the fluorescence 
spectrum of a particular particle with that of a pre-determined fluorescence 
spectrum are presented in some detail.  The deflected particles, with and 
without going through a funnel for pulse aerodynamic localization (PAL), 
were collected onto a substrate for further analyses. To demonstrate how 
hazardous materials can be deflected, TbCl3·6H2O (a simulant material for 
some chemical forms of Uranium Oxide) aerosol particles (2 µm in 
diameter) mixed with Arizona road dust was separated and deflected with 
our system. 

 
 
Introduction 

Environmental and occupational monitoring of hazardous aerosols, especially bio-
terrorism threats by way of dispersal of pathogenic bio-aerosols, requires advanced 
systems that can classify air-borne particles in quasi real-time and in-situ. UV laser-
induced fluorescence spectra (UV-LIF) are capable of, at least partially, distinguishing 
bio-aerosols from many kinds of ambient aerosols.  It is this feature that makes UV-LIF a 
useful front-end or first-stage identifier that can classify individual particles (1-10 micron 
range) as bio- or non-bio- aerosols. 

Unfortunately, some ambient aerosols, such as soot particles from diesel engine 
exhaust and cigarette smoke, have fluorescence spectra similar to bio-aerosols. In order to 
decrease false alarm rates, further specific analysis with a second-stage identifier, such as 
biochemical assay, Raman spectroscopy, FTIR, or mass spectroscopy, is required for the 
verification that the suspect bio-aerosols are threat particles, particularly for the 
determination of specific species of the bio-aerosols. All of these diagnostic/analytical 
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techniques will require several minutes to gather sufficient signal strength.  Furthermore, 
the techniques will benefit from having the samples be mainly bio-aerosols, and not be 
burdened by the much larger concentration of non-bio-aerosols in the ambient.  Therefore, 
the optically based UV-LIF system, is considered to be one of the fastest and best front-
end systems capable of deflecting certain class of particles from the main particle flow 
column. 

In this paper, a prototype of the front-end system is reported with details on the 
electronics that is keyed to having the UV-LIF spectra cue the particle deflector.  Based 
on the dispersed UV-laser induced fluorescence (UV-LIF) spectra, selective deflection is 
achieved by separating bio-aerosols from an overwhelmingly large concentration of 
ambient aerosols.   The deflection of the bio-aerosols is done aerodynamically rather than 
by electrostatic forces which require a charge/mass ratio be constant.  The deflected bio-
aerosols would have been spread out in a cone shaped distribution, but upon entering the 
funnel, they are focused onto an area of 1 mm in diameter. The deflector is cued in real-
time depending upon the resemblance of the captured spectral data of a particle to a pre-
defined spectral signature. Here, we use a 32-anode photomultiplier tube (32A-PMT) 
with its associated electronics to detect the single-shot laser induced fluorescence 
spectrum of each aerosol as it flows through the system. We present how an onboard 
digital processor can perform a particle discrimination algorithm on the captured spectral 
data.  
 
Overview of the front-end system 

The developed front-end system consists of the following key elements: (1) A 
concentrator that draws air at about 300 liters/min and is based on the virtual impactor 
principle.  The concentrator keeps most of the particles in the 1 to 10 µm diameter toward 
a slower speed pump end that exit about 1 liter/min.  (2) By using a specifically designed 
nozzle, the particles are forced to flow in a straight trajectory, localized within a 
cylindrical area of 600 µm in diameter for over a distance of at least 1 cm.  (3) The 
exiting particles are aligned to flow through the intersecting volume (referred to as the 
trigger volume) of two diode laser beams with different wavelengths. Only if the particles 
travel through this intersection would the elastic scattered signal at two PMTs present and 
then issue an AND gate output.  (4) This output serves as a trigger to the UV laser (263 
nm, the 4th-harmonic of YLF) which is synchronized to illuminate the detected particle 
from the trigger volume flying through the sample volume (defined as the intersection of 
the UV-laser beam and the focal point of the fluorescence collection lens). When this 
particle is irradiated with UV radiation (λ = 263 nm), the UV-LIF spectrum is dispersed 
by a compact spectrograph covering a wavelength span of 250 nm to 700 nm. This 
wavelength span of 450 nm is aligned with the detector elements from the 32A-PMT. (5) 
Every aerosol particle that transit through the trigger volume and subsequently transits 
though the sample volume is irradiated. The resulting fluorescence spectrum for each of 
these particles is captured and analyzed by the readout and processing electronics made 
by Vtech Engineering Corporation. (6) The on board processor determines whether or not 
a particle has the characteristic spectrum of known bio-threat aerosols.  If a particle 
matches pre-determined signature criteria, the electronics trigger the air puffer to blast 
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out a puff of air, which then deflects that particular particle as it flows further down 
stream. 

In the spirit of using several detectors, we present the role of a 32A-PMT with its 
associated electronics for detecting the single-shot UV-LIF spectrum of each aerosol on-
the-fly.  The multi-anode PMT is equivalent to having multiple separate PMT’s, but in 
one unit. The uniqueness of the multi-anode PMT is in the electron multiplication 
section, which is discretely distributed throughout the housing unit. The objective of the 
multiplication section is to achieve 9-stages of electron multiplication (gain of nearly 106) 
while preserving the spatial integrity of a photoelectron that is emitted from a particular 
photocathode. It has the single-photon sensitivity, fast response (0.6 ns), and wide 
dynamic range (over 1000), but with enough spectral resolution for the broad band 
fluorescence spectra from bio-aerosol particles.  
 
PhotoniQ-OEM: PMT Readout and Processing Electronics 

Vtech Engineering Corporations’ PhotoniQ-OEM readout and processing 
electronics system (PhotoniQ) combine several functions necessary for a multi-channel 
bio-aerosol detection instrument. As shown in the picture below, the electronics are 
actually composed of two boards. The smaller board (3" x 2.5") interfaces to the multi-
channel detector, which in this case is the 32-APMT (H7260). The larger board (5" x 7") 
contains the analog processing electronics, the analog-to-digital converters, the input and 
output triggering circuitry, various instrument control I/O circuitry, and the digital signal 
processing (DSP) circuits. The two boards are connected with a shielded cable. A 
daughter-card (not shown) containing a high voltage power supply for biasing the PMT 
can be mounted to the larger board. The HV bias on this daughter-card is controlled by 
the DSP within the PhotoniQ.  All of these electronics are powered from a single +5V, 9 
Watt power supply. 

 

 
Figure 1:  PhotoniQ-OEM readout and processing electronics system for multiple-channel 

detector (Vtech Engineering Corporations) 
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The PhotoniQ electronics receive an incoming digital trigger signal for each 
particle in the trigger volume. The internal triggering circuitry then adds a variable delay 
from that trigger that corresponds with the time necessary for the particle to travel to the 
sample volume. The trigger circuitry initiates a corresponding boxcar integration cycle to 
collect the fluorescence spectral signal while the particle is within the sample volume. 
The PhotoniQ can also generate the LED or LD drive trigger to be synchronized with 
these internal operations.  

The 32 integrated signals are then further processed in the analog domain before 
being digitized by onboard analog-to-digital converters (ADCs). This resulting digital 
“vector” sample represents the particle’s spectral information. The vector is then further 
processed digitally by the DSP. Finally, a spectral match algorithm is performed within 
the PhotoniQ’s DSP to determine if the particle matches a stored particle signature and 
therefore should be discriminated. If the particle meets the algorithm’s criteria, a digital 
signal is output from the PhotoniQ to actuate the puffer. Because of the re-programmable 
nature of the DSP, many different algorithmic detection methods can be supported using 
the same hardware. 

The PhotoniQ also contains a number of programmable analog and digital 
input/output lines for general instrument control. These ADCs, DACs, and digital I/O can 
be used to monitor and control instrument biases, optical intensity levels, fans, motors, 
temperature, humidity, etc. All of these features are controlled from the onboard DSP. 

The PhotoniQ operates as a stand-alone readout and processing system with the 
32A-PMT, however during development the digital vector samples from each particle can 
be output to a PC using a high speed parallel interface. In this mode of operation, the data 
from particles that match the signature criteria are marked in the log file for continued 
analysis and algorithm verification. In addition to data logging, a LabView interface 
allows the user to control the various operational parameters of the PhotoniQ such as 
trigger settings, integration times, and particle algorithm/discrimination settings. 
 
Actual Applications: Aerodynamic sorting and pulse aerodynamic localization 
(PAL) of bio-aerosols and/or hazardous particles cued on the UV-LIF spectroscopy 

As we mentioned above, the UV-LIF system has been considered to be one of the 
best front-end for the bio-aerosol discriminator. When the concentration ratio of non-bio-
aerosols to bio-aerosols is too high, more specific analysis is adversely affected. A 
technique for enrichment or sorting of bio-aerosols would then be essential. In order to 
get high speed and sensitivity, it is necessary for the sorted bio-aerosols to be localized 
into a small area to match the requirement of the second stage identifier.  

Therefore, our front-end system can deflect, localize, and thereby enrich bio-
aerosols which are selected by real-time detection and spectral analysis of single-shot 
UV-LIF of single flowing aerosols. Once an aerosol is found to have a characteristic 
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suspect fluorescence spectrum, a trigger signal is generated and sent to a pulsed valve to 
produce a fast directional puff of gas that deflects this particular bio-aerosol to a 
collection area. The particles are then localized by PAL onto a small area of a collecting 
substrate within a spot around 1 mm for the high density and small localization 
requirement for further second stage identification. 

The puffer or the deflector consists of an electromagnetic actuated pulsed valve.  
It can generate a short (60 µs) supersonic air-packet (18 psi) within 20 µs, which only 
causes a very short interruption of the main aerosol stream and therefore deflects only 
very few neighboring “unwanted” particles along with the sorted particle. The puffer can 
selectively deflect either of two neighboring particles only 500 µm apart. 

       
Figure 2:  250 successive single-shot fluorescence spectra from ambient aerosols (NRL on 
Aug. 18, 2004) illuminated by the 263 nm Q-switched Nd:YLF laser (50 µJ/pulse). The blue 
spectra are the detected ambient aerosol particles having bio-threat-like fluorescence spectra, 
while the red spectra are from non-bio-threat-like particles.  

 
 Figure 2 shows 250 successive fluorescence spectra from ambient aerosols (NRL 
on Aug.18, 2004) illuminated by the 263 nm Q-switched Nd:YLF laser (50 µJ/pulse). 
Among them, 19 particles have been assigned to be bio-threat-like aerosols and got 
deflected (the blue spectra), all of them have a strong fluorescence peak around 330 nm. 
And the other 231 particles with their corresponding fluorescence spectra did not meet 
the criteria conditions and have been considered as nonsuspect aerosols (the red spectra) 
without deflection. The corresponding collections of the deflected aerosols with different 
criteria definitions of fluorescence spectra are under analysis by FTIR spectroscopy.  

The sorting of Bacillus subtilis from Arizona road dust (ARD) has been reported 
[1].  In this paper we will discuss the selective deflection of the fluorescent particles 
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TbCl3·6H2O in the midst of a high concentration of Arizona road dust.  TbCl3·6H2O is 
considered to be a simulant material for uranium oxide (UOx), a hazardous material.  
TbCl3·6H2O was selected because of its distinguished time-resolved fluorescence spectra, 
safe aerosol generation and ease of handling compared with UOx. 

In order to demonstrate the concept of our system, a mixture of TbCl3·6H2O and 
Arizona road dust (ARD) particles (equal spherical volumes ~2±0.3 µm in diameter) 
were used in laboratory tests.  We combined the outputs of two ink-jet aerosol generators 
(IJAG) to produce the TbCl3·6H2O particles as the target aerosol in a minority 
concentration (20%) of the mixture, and ARD as the background aerosol (80% of 
mixture). Figure 3 shows the sorting results of TbCl3·6H2O. The deflected and un-
deflected aerosols are collected on separate SEM tapes held by microscope glass covers. 
The un-deflected aerosols are collected about 1 cm beneath the tip of the inlet nozzle. 
Images (the upper part of Fig. 3) taken by a digital camera show the overall dimensions 
of the deposited aerosols. The un-deflected aerosols (mostly ARD) are localized within 
an area smaller than 1 mm in diameter.  However, the deflected TbCl3·6H2O aerosols are 
initially spread out over a large area because the puff of air is highly turbulent.  Then the 
deflected particles are localized by a funnel into a small area around 1 mm in diameter.   
The details of the funnel along with computational fluid dynamic results will be 
discussed in a forthcoming publication [2]. 
 A fluorescence microscope and a color digital camera were used to check the 
composition of the deflected particles when illuminated by a UV light source and a weak 
background white light. Most of the un-deflected particles are ARD particles (no 
fluorescence) with a few TbCl3·6H2O particles (the left lower part of Fig. 3), while in the 
deflected spot of 1 mm the particles are very pure TbCl3·6H2O particles (the right lower 
part of Fig. 3). Only a few dust particles can be found in the deposited area of the 
deflected particles. By counting the TbCl3·6H2O and ARD particles in this area, we 
obtained a concentration ratio (TbCl3·6H2O to ARD particles) of at least 103 to 1.  Note, 
before our selection process the concentration ratio of TbCl3·6H2O to ARD particles was 
1 to 4.  This enriching factor (the ratio of the concentration of the sorted particles to the 
concentration of the aerosol mixture before sorting) is larger than 103 in this test. The 
localization of the deflected particles and subsequent enrichment in a one millimeter spot 
size create an ideal sample for FTIR, Raman scattering, or other biochemical analyses.  
This aerodynamic sorting technique, cued by the fluorescence spectra, demonstrates a 
unique capability for selectivity and efficiency in sorting interesting particles from 
background aerosols.  It appears that this technique is a viable front-end instrument for 
sorting out “wanted or suspect” aerosols from ambient or background aerosols. 
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Figure 3: The images and microscopic fluorescence images of the un-deflected & deflected 
aerosol particles of TbCl3·6H2O and Arizona road dust (ARD). 

 
 
Summary 

A front-end system of real-time, in-situ bio-aerosol discriminator is reported here. 
It can deflect, localize, and thereby, enrich bio-aerosols selected by real-time detection 
and spectral analysis of single-shot UV-LIF spectrum of a particle on-the-fly. Once an 
aerosol is found to have a spectrum similar to that of a threat-like particle, a trigger signal 
is generated and sent to a pulsed valve.  The valve then produces a fast directional puff of 
gas that deflects this particular bio-aerosol into a funnel that localizes the deflected 
particles onto a small area on the collecting substrate. Laboratory and field test results 
show that large enrichment factor of bio-species from the mixed aerosols or ambient 
aerosols can be achieved at least as high as 103. This technology will supply high 
concentration of suspect bio-aerosol particles for further specific analyses via bio-
chemical assay technology or other subtle optical methods such as Raman spectroscopy. 
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